44 research outputs found

    Some like it hot... : the evolution and genetics of temperature dependent body size in Drosophila melanogaster

    Get PDF
    Body size is one of the most obvious and most important characteristic of any organism. A thorough understanding of how and why a certain individual obtains a specific body size, given its evolutionary history and ecological context, is a fundamental question in biology. One special case of variation in size is clinal variation: individuals of the same species indigenous to higher latitudes are on average larger than their conspecifics inhabiting regions at lower latitudes (closer to the equator). This pattern has a genetic basis, is very common in many animal species and represents a long-standing puzzle in evolutionary biology. Drosophila melanogaster populations from temperate and tropical regions were known to produce the clinal variation in body size, very likely as a result of adaptation to the different climates. Aim of this study was to understand the evolution of this genetic difference in average body size between populations adapted to low and high temperatures. Analyses of correlated life-history traits, interaction of selection pressures, biochemistry of resource allocation and global gene expression resulted in formulating the following scenario. We suggest that geographical variation of adult body size in Drosophila melanogaster is plausibly the result of thermal evolution of a genetic trade-off between adult size and larval survival. Because a cold environment seems to select for a large adult body and a warm environment seems to select for increased larval vigor to resist challenges to pre-adult survival, alternative resource allocation strategies have evolved. Cold adapted genotypes seem to invest glycogen reserves preferentially in growth while warm adapted genotypes seem to invest their glycogen reserves preferentially in larval survival. The physiological basis of these alternative strategies is plausibly variation in the utilization of glycogen induced by variation in glycogen processing enzyme activities. A large fraction of the genes found to be differentially expressed across genotypes with different body size are involved in cell growth and maintenance. This suggests that the actual molecular determinants of the divergence in cellular metabolism and body size might be effectors and regulators of cell growth and differentiation through variation in the activity of signal transduction pathways. Thus, the real difference between individuals from different geographical populations seems to be not a quantitative but a qualitative one. Warm and cold adapted genotypes are fundamentally different in their cellular metabolism and physiology. This underlying divergence allows them to exhibit alternative resource allocation strategies that result in adaptive life-historie

    Genetic Variation at Selected SNPs in the Leptin Gene and Association of Alleles with Markers of Kidney Disease in a Xhosa Population of South Africa

    Get PDF
    BACKGROUND: Chronic kidney disease (CKD) is a significant public health problem that leads to end-stage renal disease (ESRD) with as many as 2 million people predicted to need therapy worldwide by 2010. Obesity is a risk factor for CKD and leptin, the obesity hormone, correlates with body fat mass and markers of renal function. A number of clinical and experimental studies have suggested a link between serum leptin and kidney disease. We hypothesised that variants in the leptin gene (LEP) may be associated with markers of CKD in indigenous black Africans. METHODOLOGY/PRINCIPAL FINDINGS: Black South Africans of Xhosa (distinct cultural Bantu-speaking population) descent were recruited for the study and four common polymorphisms of the LEP (rs7799039, rs791620, rs2167270 and STS-U43653 [ENSSNP5824596]) were analysed for genotype and haplotype association with urine albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate (eGFR), Serum creatinine (Scr) and serum leptin level. In one of the four single nucleotide polymorphisms (SNPs) we examined, an association with the renal phenotypes was observed. Hypertensive subjects with the T allele (CT genotype) of the ENSSNP5824596 SNP had a significantly higher eGFR (p = 0.0141), and significantly lower Scr (p = 0.0137). This was confirmed by haplotype analysis. Also, the haplotype GAAC had a modest effect on urine albumin-to-creatinine ratio in normotensive subjects (p = 0.0482). CONCLUSIONS/SIGNIFICANCE: These results suggest that genetic variations of the LEP may be associated with phenotypes that are markers of CKD in black Africans

    FAM-MDR: A Flexible Family-Based Multifactor Dimensionality Reduction Technique to Detect Epistasis Using Related Individuals

    Get PDF
    We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information

    Comprehensive mRNA Expression Profiling Distinguishes Tauopathies and Identifies Shared Molecular Pathways

    Get PDF
    Background: Understanding the aetiologies of neurodegenerative diseases such as Alzheimer's disease (AD), Pick's disease (PiD), Progressive Supranuclear Palsy (PSP) and Frontotemporal dementia (FTD) is often hampered by the considerable clinical and molecular overlap between these diseases and normal ageing. The development of high throughput genomic technologies such as microarrays provide a new molecular tool to gain insight in the complexity and relationships between diseases, as they provide data on the simultaneous activity of multiple genes, gene networks and cellular pathways. Methodology/Principal Findings: We have constructed genome wide expression profiles from snap frozen post-mortem tissue from the medial temporal lobe of patients with four neurodegenerative disorders (5 AD, 5 PSP, 5 PiD and 5 FTD patients) and 5 control subjects. All patients were matched for age, gender, ApoE-e and MAPT (tau) haplotype. From all groups a total of 790 probes were shown to be differently expressed when compared to control individuals. The results from these experiments were then used to investigate the correlations between clinical, pathological and molecular findings. From the 790 identified probes we extracted a gene set of 166 probes whose expression could discriminate between these disorders and normal ageing. Conclusions/Significance: From genome wide expression profiles we extracted a gene set of 166 probes whose expression could discriminate between neurological disorders and normal ageing. This gene set can be further developed into an accurate microarray-based classification test. Furthermore, from this dataset we extracted a disease specific set of genes and identified two aging related transcription factors (FOXO1A and FOXO3A) as possible drug targets related to neurodegenerative disease

    Variation at GRN 3′-UTR rs5848 Is Not Associated with a Risk of Frontotemporal Lobar Degeneration in Dutch Population

    Get PDF
    Background: A single nucleotide polymorphism (rs5848) located in the 3′- untranslated region of GRN has recently been associated with a risk of frontotemporal lobar degeneration (FTLD) in North American population particularly in pathologically confirmed cases with neural inclusions immunoreactive for ubiquitin and TAR DNA-binding protein 43 (TDP-43), but negative for tau and alpha-synuclein (FTLD-TDP). Methodology/Principal Findings: In an effort to replicate these results in a different population, rs5848 was genotyped in 256 FTLD cases and 1695 controls from the Netherlands. Single SNP gender-adjusted logistic regression analysis revealed no significant association between variation at rs5848 and FTLD. Fisher's exact test, failed to find any significant association between rs5848 and a subset of 23 pathology confirmed FTLD-TDP cases. Conclusions/Significance: The evidence presented here suggests that variation at rs5848 does not contribute to the etiology of FTLD in the Dutch population

    Genetic Variants at 1p11.2 and Breast Cancer Risk: A Two-Stage Study in Chinese Women

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified several breast cancer susceptibility loci, and one genetic variant, rs11249433, at 1p11.2 was reported to be associated with breast cancer in European populations. To explore the genetic variants in this region associated with breast cancer in Chinese women, we conducted a two-stage fine-mapping study with a total of 1792 breast cancer cases and 1867 controls. METHODOLOGY/PRINCIPAL FINDINGS: Seven single nucleotide polymorphisms (SNPs) including rs11249433 in a 277 kb region at 1p11.2 were selected and genotyping was performed by using TaqMan® OpenArray™ Genotyping System for stage 1 samples (878 cases and 900 controls). In stage 2 (914 cases and 967 controls), three SNPs (rs2580520, rs4844616 and rs11249433) were further selected and genotyped for validation. The results showed that one SNP (rs2580520) located at a predicted enhancer region of SRGAP2 was consistently associated with a significantly increased risk of breast cancer in a recessive genetic model [Odds Ratio (OR)  =  1.66, 95% confidence interval (CI)  =  1.16-2.36 for stage 2 samples; OR  =  1.51, 95% CI  =  1.16-1.97 for combined samples, respectively]. However, no significant association was observed between rs11249433 and breast cancer risk in this Chinese population (dominant genetic model in combined samples: OR  =  1.20, 95% CI  =  0.92-1.57). CONCLUSIONS/SIGNIFICANCE: Genotypes of rs2580520 at 1p11.2 suggest that Chinese women may have different breast cancer susceptibility loci, which may contribute to the development of breast cancer in this population

    Inheritance of Telomere Length in a Bird

    Get PDF
    Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length

    A Fine-Mapping Study of 7 Top Scoring Genes from a GWAS for Major Depressive Disorder

    Get PDF
    Major depressive disorder (MDD) is a psychiatric disorder that is characterized -amongst others- by persistent depressed mood, loss of interest and pleasure and psychomotor retardation. Environmental circumstances have proven to influence the aetiology of the disease, but MDD also has an estimated 40% heritability, probably with a polygenic background. In 2009, a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. A non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became only nominally significant after post-hoc analysis with an Australian cohort which used similar ascertainment. The absence of genome-wide significance may be caused by low SNP coverage of genes. To increase SNP coverage to 100% for common variants (m.a.f.>0.1, r2>0.8), we selected seven genes from the GAIN-MDD GWAS: PCLO, GZMK, ANPEP, AFAP1L1, ST3GAL6, FGF14 and PTK2B. We genotyped 349 SNPs and obtained the lowest P-value for rs2715147 in PCLO at P = 6.8E−7. We imputed, filling in missing genotypes, after which rs2715147 and rs2715148 showed the lowest P-value at P = 1.2E−6. When we created a haplotype of these SNPs together with the non-synonymous coding SNP rs2522833, the P-value decreased to P = 9.9E−7 but was not genome wide significant. Although our study did not identify a more strongly associated variant, the results for PCLO suggest that the causal variant is in high LD with rs2715147, rs2715148 and rs2522833

    Polymorphisms in the SAA1/2 Gene Are Associated with Carotid Intima Media Thickness in Healthy Han Chinese Subjects: The Cardiovascular Risk Survey

    Get PDF
    BACKGROUND: Serum amyloid A protein (SAA) is not only an inflammatory factor, but also an apolipoprotein that can replace apolipoprotein A1 (apoA1) as the major apolipoprotein of high-density lipoprotein (HDL), which has been linked to atherosclerosis. However, the relationship between genetic polymorphisms of SAA and the intima-media thickness (IMT) of the common carotid artery in healthy subjects remains unclear. We investigated the role of SAA1 and SAA2 gene polymorphisms with IMT in a cohort of healthy subjects participating in the Cardiovascular Risk Survey (CRS) study. METHODOLOGY/PRINCIPAL FINDINGS: Anthropometric and B-mode ultrasound of the carotid IMT were measured in 1914 subjects (849 men; 1065 women) recruited from seven cities in Xinjiang province, (western China). Four SNPs (rs12218, rs2229338, rs1059559, and rs2468844) were genotyped by use of the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The SNP rs12218 was associated with carotid IMT by analyses of a dominate model (P<0.001) and additive model (P = 0.003), and the difference remained significant after multivariate adjustment (P = 0.008, P<0.001, respectively). This relationship was also observed in rs2468844 after multivariate adjustment by recessive model analysis (P = 0.011) but this was not observed in rs2229338 and rs1059559 before and after multivariate adjustment. These associations were not modified by serum HDL concentration. Furthermore, there were significant interactions between rs2468844 and rs12218 (interaction P<0.001) and rs2229338 (interaction P = 0.001) on carotid IMT. CONCLUSION/SIGNIFICANCE: Both rs12218 of the SAA1 gene and rs2468844 of SAA2 gene are associated with carotid IMT in healthy Han Chinese subjects

    A Common Polymorphism in the Promoter Region of the TNFSF4 Gene Is Associated with Lower Allele-Specific Expression and Risk of Myocardial Infarction

    Get PDF
    BACKGROUND: The TNFSF4/TNFRSF4 system, along with several other receptor-ligand pairs, is involved in the recruitment and activation of T-cells and is therefore tentatively implicated in atherosclerosis and acute coronary syndromes. We have previously shown that genetic variants in TNFSF4 are associated with myocardial infarction (MI) in women. This prompted functional studies of TNFSF4 expression. METHODS AND RESULTS: Based on a screening of the TNFSF4 genomic region, a promoter polymorphism (rs45454293) and a haplotype were identified, conceivably involved in gene regulation. The rs45454293T-allele, in agreement with the linked rs3850641G-allele, proved to be associated with increased risk of MI in women. Haplotype-specific chromatin immunoprecipitation of activated polymerase II, as a measure of transcriptional activity in vivo, suggested that the haplotype including the rs45454293 and rs3850641 polymorphisms is functionally important, the rs45454293T- and rs3850641G-alleles being associated with lower transcriptional activity in cells heterozygous for both polymorphisms. The functional role of rs45454293 on transcriptional levels of TNFSF4 was clarified by luciferase reporter assays, where the rs45454293T-allele decreased gene expression when compared with the rs45454293C-allele, while the rs3850641 SNP did not have any effect on TNFSF4 promoter activity. Electromobility shift assay showed that the rs45454293 polymorphism, but not rs3850641, affects the binding of nuclear factors, thus suggesting that the lower transcriptional activity is attributed to binding of one or more transcriptional repressor(s) to the T-allele. CONCLUSIONS: Our data indicate that the TNFSF4 rs45454293T-allele is associated with lower TNFSF4 expression and increased risk of MI
    corecore